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Abstract

This paper describes the optimization strategies employed and their degree of suc-

cess for a parallel �nite element application for liquid composite manufacturing process

modeling. This code represents a di�cult challenge for both the software developer and

the parallel computer alike. The unstructured nature of the code creates an environ-

ment requiring both large amounts of computation and communication. This in turn
provides opportunities to judge the true performance of large-scale parallel systems and

also the e�ectiveness of various parallel development methodologies. We discuss the

use of message passing (using the Message Passing Interface) in this code and various

optimization strategies used to increase the code's performance. We also compare this

performance against those results achieved from a data parallel implementation using

High Performance Fortran (HPF).

1 Introduction and Motivation

The development of the multiprocessor has opened up new possibilities in the realm of
scienti�c computing. However, the variations and complexities of the parallel computers
built today require careful code pro�ling and tuning to achieve the maximum performance
possible. Achieving good performance also requires a comprehensive understanding of the
various parallel methodologies available.

One such methodology is message passing where processors communicate through explicit
calls to communication routines. The Message Passing Interface (MPI) has become the
de facto standard for achieving e�ective scalable parallel software implementations for this
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paradigm. Scalable codes written using MPI are extremely portable and are applicable to
clusters, shared memory architectures, and massively parallel computing platforms.

Another approach to parallel computing is data parallelism. Data parallelism implies
that simultaneous operations are applied to every item in a large data set. Implemented
correctly, this approach is also germane to the various parallel computing architectures in
use today.

This paper details our experiences in developing parallel computing approaches for the
COMPOSE (Composite Manufacturing Process Simulation Environment) suite of codes cur-
rently under development at the U. S. Army Research Laboratory and the University of
Minnesota. These codes are part of the Department of Defense High Performance Com-
puting Modernization Program, Common High Performance Computing Software Support
Initiative (CHSSI). We also brie
y address the use of HPF to achieve a parallel solution.
These codes are designed to enable large-scale liquid composite manufacturing simulations.
By combining parallel computing and novel algorithmic approaches, previously impossible
large-scale simulations and even parametric studies are now possible. These simulations, that
have wide applicability to Army future combat systems and commercial ventures, provide a
simulation based approach for reducing cost, time, and risk associated with the composite
manufacturing industry.

The ability to provide timely process models and simulations is critical for optimization
of an integrated and intelligent manufacturing environment. Accordingly, we have vested
signi�cant e�ort in selecting the most e�cient strategies possible when scaling to large com-
puting architectures. Furthermore, signi�cant e�ort has been spent to optimize the software
to provide the fastest solution possible. The following sections further describe the problem
being solved and the message passing and data parallel solutions to the problem. We con-
centrate on the optimizations and their e�ects in the MPI version of the code. We conclude
by comparing the performance of the two approaches with some general observations. It
should be noted that these developments are applicable to the general set of unstructured
�nite element codes.

2 Computational Problem

The primary objectives of the COMPOSE suite are to predict resin impregnation behavior
in �ber preforms and to track the pressure �eld and 
ow front during �lling. Other fac-
tors, such as temperature e�ects, are in various stages of development and testing. Liquid
composite molding processes require a permeable �ber preform to be saturated with a ther-
mosetting resin. Failure of the resin to completely imbue the preform will result in a failed
manufacturing attempt. Eulerian �xed-mesh approaches are employed to model the various
complexities of the parts and molds. Finite element meshes comprised of nodes and elements
(nodal connectivity) are used for the computational model. Unstructured meshes, where any
number of elements can meet at a single node, are required for these geometrically complex
models. More detailed descriptions of the computational problem and pertinent applications
are available [1{3].
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3 MPI

3.1 Approach

Current core solver developments use the Fortran 90 programming language. This language
was chosen due to its many enhancements over the FORTRAN 77 language. Predominately,
the new feature of most value is the ability to use heap storage through allocatable arrays.
Because of the uncertain impact on performance of more advanced features, such as abstract
data typing, these are used more rarely and not in areas of compute bound loops. Pre- and
post-processing routines largely employ software written in C++. Solver translations into
C++ are planned for the future to allow the code to be more tightly coupled with pre- and
post-processing developments and user interfaces. Furthermore, tremendous advantages in
software reuse have been noted in the various preprocessing routines, and we seek to carry
this over to the numerical solver as well.

A domain decomposition approach is required

Figure 1: 8-processor domain decomposi-
tion of an airframe structure.

to make the problem suitable for SPMD paral-
lelism. This step produces a partition of the
larger problem into a set of processor-speci�c,
nonoverlapping smaller subdomains. Figure 1
shows a �nite element mesh partitioned for 8
processors. Each of these subdomains is in turn
mapped to a processor to allow for a paral-
lel solution. Shared node boundaries present a
problem in that they represent areas where ex-
plicit communication between the processors is
required. A good mesh partitioner is obviously
one that tries to promote load balance by creat-
ing subdomains that are roughly the same size,
and also one that tries to reduce the number of
nodes that are shared between the subdomains.
Several tools are available to create these partitions, including METIS (on which our parti-
tions are based) and JOSTLE [4, 5].

Several guiding principles are in order for explicitly parallel codes using message passing.
To begin with, the removal of any unnecessary barriers is paramount. Detailed control 
ow
analysis early in code development revealed an unnecessary call to MPI BARRIER. Analysis
indicated that program 
ow would result in all processors executing a reduction before any
critical region, hence the barrier could be removed. Furthermore, we attempted to hide
communication behind computations. This is well known in library-based optimizations
where the compiler is not free to optimize through the call. However, we were limited in this
regard because of the tight loop structure of the solver and update sections of the code. We
enabled the system to be more 
uid by using nonblocking sends and wildcards, thus limiting
any arti�cial requirements for data communication ordering.
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Domain decomposition leads to numerous interface nodes that are shared between var-
ious subdomains. Also, numerous matrices and vectors are formed that are local to the
various processors. These can be in either local or assembled forms. We employ a precon-
ditioned conjugate gradient solver to compute the vector-vector inner products during the
iterations. Such an approach is e�cient, but heavily taxes the processor interconnection
network. Interface vector entries are sent and received using the send and receive pairs men-
tioned previously. The MPI ALLREDUCE call is used to determine the global inner product
from the subdomain inner products. It should be kept in mind that this call is not only
nonscalable, but actually creates more of a burden to the system as processors are added.

The solver in COMPOSE requires the
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Figure 2: MPI Solver for COMPOSE.

solution of a linear system of equations
based on a sparse, symmetric positive def-
inite matrix of the form Ax = b. An it-
erative conjugate gradient algorithm, de-
veloped in the framework of multiple in-
struction, multiple data (MIMD) comput-
ers, is used [6]. Diagonal precondition-
ers were later used to improve the con-
vergence rate [7]. The iterative procedure
is shown in �gure 2. Entries representing
assembled forms require communications
during formation. With many scienti�c
codes it is common to observe a common
90/10 ratio for execution; 90% of the com-
putations are executed in about 10% of
the code. This code exhibits this behav-
ior and this small code segment represents
the majority of the execution time. The
computational data structures involved in
this solver consist of both node and ele-

ment level computations, but a coupled interdependency exists for these two levels of com-
putations. Hence, this code can quickly go from being compute bound to communication
bound for large sets of processors.

3.2 Optimizations

As previously stated, MPI uses the SPMD approach to parallelism. Accordingly, code tuning
for parallel performance is simply an extension of optimizing the single thread execution.
We have also noted performance gains by modi�cation of data sets that does not e�ect the
physics behind the simulation.
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3.2.1 Data Optimizations to Improve Cache Performance

Most reduced instruction set computers (RISC) use various levels of cache to overcome
the CPU/memory system performance gap. Unfortunately, the unstructured nature of the
meshes used in COMPOSE can cause problems with maintaining cache a�nity. That is, data
will often be loaded into cache only to be swapped out quickly. Easily, the largest cost of
computing in the COMPOSE solver comes from repeated matrix-vector multiply operations.
The node-based computations with the matrix A, stored in compressed row format, are based
on element connectivity lists. For example, if a triangular element is comprised of nodes 1,
2, and 3231, a load of data for node 1 will also load data for node 2 into cache, but mostly
likely not for node 3231. Ideally, we would like to have this element comprised of nodes 1,
2, and 3.

Various techniques have been developed with the intent of reducing the bandwidth and
envelope of a sparse matrix representation and hence improving memory system performance
[8]. We have implemented a technique based on the Cuthill-McKee (CM) approach [9]. A
slight modi�cation of reversing the ordering (RCM) has been shown to be more e�cient and
has been added to our preprocessing pass. Figure 3 graphically displays the non-zero entries
for an unstructured mesh. Figure 3(a) shows the structure based on the unprocessed mesh
coming from a commercial Computer Aided Design (CAD) package. Figure 3(b) shows the
same mesh after being reordered. The di�erence in this case was quite dramatic.
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Figure 3: Distribution of non-zero entries in a �nite element sparse matrix.

How well did bandwidth reduction reduce cache misses and e�ect performance? We have
observed signi�cant gains on the Cray T3E-1200 system. This architecture contains only 8
KB of primary cache and only 96 KB of combined secondary data and instruction cache.
The RCM processed meshes consistently ran about 10% faster than the original meshes.
However, the large-cache SGI Origin 3800 (8 MB secondary cache) architecture ran each
mesh in roughly the same time. A study of the hardware performance counters on this
machine did reveal some memory system improvements though. These are mentioned brie
y
in table 1.
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Statistic Original Renumbered
L1 Cache Line Reuse 5.42 5.67
L2 Cache Line Reuse 4548.95 9530.24
Memory bandwidth used (MB/s) 1.21 0.43

Table 1: Reduced memory system demands.

3.2.2 Compiler and Source Code Optimizations

Developers of scienti�c computing codes are quite familiar with the issues of speed and accu-
racy in numerical computing. In particular, of the many 
oating point operations possible,
division is one of the most expensive in terms of cycles to completion. Within the scope
of accuracy requirements, transformations such as strength reduction can give major per-
formance gains. This technique involves replacing an expensive instruction with a series of
more simple, quickly computed instructions. A good example is replacing a multiplication
operation by a series of additions.

Prior to full optimization, the COMPOSE solver update routines contained several di-
vision operations. An analysis of the assembly code showed one case where a delay of nine
unused cycles was being generated waiting for a division operation to complete. Further
compounding this delay was the fact that it was positioned inside of a loop structure which
in turn was nullifying any improvements from the software pipeliner. By using multiply by
reciprocal, loop invariant code motion, and strength reduction, the original loop generating
poor results

#<swps> 2 flops ( 7% of peak)

(madds count as 2)

#<swps> 0 madds ( 0% of peak)

#<swps> 3 mem refs ( 21% of peak)

#<swps> 3 integer ops ( 10% of peak)

#<swps> 8 instructions ( 14% of peak)

was replaced with code generating much better performance

#<swps> 8 flops ( 30% of peak)

(madds count as 2)

#<swps> 4 madds ( 30% of peak)

#<swps> 13 mem refs (100% of peak)

#<swps> 6 integer ops ( 23% of peak)

#<swps> 23 instructions ( 44% of peak)

This quick change reduced execution time by about 10%. Full-scale optimization and pro-
�ling will often reveal these potential areas of savings.

One �nal optimization employed is something we call reverse procedure integration. It
acts in a reverse fashion from inlining. Basically, contiguous code segments that are internal
to a subroutine are moved to their own subroutine. One of the most complicated tasks in
compiler science is instruction scheduling. This technique serves as a way for the software
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developer to impart some importance on the code segment to the compiler and simplify the
instruction scheduling pass.

The same analysis that revealed the issue of several no-op instructions in the division
case mentioned earlier also revealed very complicated instruction scheduling in a critical
region of the code. It was discovered that the compiler was generating code for a matrix-
vector multiply that was executing at peak (in terms of instruction scheduled peak FLOP
rates and memory references), but was very complex and was interweaving instructions from
surrounding code. The out-of-order execution on the SGI Origin platform could be one
cause of these instruction schemes. The outer loop, which was itself part of a larger loop
structure, was being pipelined separately from the innermost loop. This seemed to stem
from some sort of prefetching of values in the outer loop of the matrix-vector multiply.
This interplay between optimizations (pipelining and prefetching) seemed to generate a fair
amount of pressure on the instruction scheduler, and in fact appeared to be detrimental.
Through reverse procedure integration, we have noted reductions of 15% in execution time
on the SGI systems. The Cray system showed no changes, and the IBM system was not fully
tested due to time constraints. We hope to visit this again for a more detailed analysis.

4 HPF

The High Performance Fortran language has been in existence for roughly the same amount
of time as the MPI libraries. However, HPF has failed to capture the wide following of MPI
for several reasons. One is the performance of the code generated by HPF. Since HPF is a
language, code development is at a higher level, with low-level details left to the compiler.
Also, some researchers no doubt incorrectly assume that data parallelism is not relevant on
today's multiple instruction, multiple data computers. HPF compilers can generate code
that performs well on shared memory, distributed shared memory, and cluster computers.

We have noted, however, that getting good performance with HPF requires time-consuming
attention to low-level detail. The HPF compiler used for this software development actu-
ally acts as a front end translator that takes HPF code and generates Fortran code (either
FORTRAN 77 or Fortran 90/95) and in turn passes this through the computer's native com-
piler. Communication can be completed with any of several techniques, such as proprietary
libraries, or even through message passing with MPI. To truly understand the actions of the
HPF compiler, it is often necessary to carefully analyze this underlying code.

4.1 Optimizations

We have implemented several strategies to boost overall HPF performance of this code.
Most performance gains have resulted from reusing communication schedules in the matrix-
vector operations, and from reorganizing the data to be more processor-partition friendly.
A complete discussion is available in a previous report [10] and will not be revisited here.

A new development did surface in HPF while collecting data for this report. The Portland
Group released version 3.2 of their HPF compiler. Just as in version 3.0, this new compiler
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allows for asymmetric block distribution of data. However, the new version is not constrained
to work only with conformable arrays. The new version should be bene�cial to unstructured
grids where the pertinent arrays will never be conformable. The new version of the compiler
will allow for shared memory compilation of asymmetric blocks rather than using replication.

Accordingly, we modi�ed our preprocessing pass that does domain reconditioning to
report the number of nodes and elements that are completely local to a processor. Each
mesh is processed for a certain number of processors, and a vector is generated that tells the
number of nodes and elements for each processor. The data is then distributed in varying
sizes, thus stopping all but the essential communication between processors. This approach
should allow for the most accurate comparison between HPF and MPI since each method
will have the minimal amount of communication required.

Unfortunately, due to the short time span between the new release of the HPF compiler
and the deadlines for this paper and several problems experienced with interactions between
the HPF compiler and the native Fortran compiler on the Cray T3E system, we are currently
unable to use this new approach in these studies. We will revisit this in the future.

5 Performance

5.1 HPC Platforms

Several high performance computing (HPC) systems were used in this study. The Cray
T3E-1200, a massively parallel (MPP) distributed memory platform, was used. This system,
located at the U. S. Army High Performance Computing Research Center (Minneapolis, MN),
has over 1024 processors with 500 MB of memory per processor. Two computers at the U. S.
Army Research Laboratory's Major Shared Resource Center (MSRC) located at Aberdeen
Proving Ground, MD were also utilized. The �rst is the SGI Origin 3800 system. At the
time of the study, this machine consisted of 128 400-MHz R12000 processors. Recently, this
computer was joined with another similar system to form a 256-processor parallel computer.
The timing studies following only scale to the 128-processor con�guration. The second
computer is the IBM Nighthawk 2 SMP system. This con�guration is comprised of 32
Power3-II SMP \high nodes," each with 16 processors clocked at 375 MHz (512 processors
total).

5.2 Timing Results

5.2.1 HPF and MPI Comparison

Due to some of the constraints mentioned earlier, the discussion of HPF versus MPI per-
formance is limited to the Cray T3E system. We are currently investigating the use of the
Portland Group HPF compiler on the SGI 3800 system. Those results will be presented as
they become available.

The wall clock run times for two problem sets are shown in Figure 4. These times are
exclusive of �le input/output. It is worth noting that simulation compute time is related
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Figure 4: Total execution time comparison of HPF and MPI scalable software.

both to mesh size and the parameter set being used (which were di�erent in this case).
The PGHPF software was compiled with the -fast option, which in turn causes the native
Fortran compiler to be called with the -Ounroll -Opipeline2 -Oscalar3 
ags. The MPI
Fortran 90 code was compiled with the -O3,pipeline3 options enabled.

It can easily be seen that the MPI code outperformed its HPF counterpart in every trial.
In Figure 4(a), the 2-processor HPF code required roughly 4.5 times longer to complete than
the MPI version. At 32 processors, the MPI version outperformed the HPF version by about
the same factor. In Figure 4(b), the 2-processor MPI code completed about 3.8 times faster
than the similar HPF code. Although the gap started to shrink, MPI was still running about
2.7 times faster than the HPF code at 128 processors.

The meshes used in the HPF study were not renumbered for cache e�ciency due to a
lack of time. The mesh was renumbered to promote processor locality, but the meshes inside
the processors were not renumbered for cache behavior. It is not anticipated that this will
make a large di�erence in the execution time. While the RCM pass resulted in about a 10%
savings on the MPI code, this savings is not enough to equalize performance between HPF
and MPI.

5.2.2 MPI Cross Platform Comparisons

The times reported in this section are based on jobs submitted in standard production run
queues. The only exception is the IBM system that was in pioneer user mode during these
trials. However, the machine was still operating at or near capacity.

Figure 5 shows the execution time of COMPOSE for a representative unstructured mesh.
Figure 5(a) is for a mesh comprising 45,547 nodes and 89,945 elements, and Figure 5(b) is
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Figure 5: Total execution time comparison of MPI scalable software.

for a mesh built from 405,327 nodes and 809,505 elements. The T3E plots in Figure 5(b)
are not shown for less than 128 processors due to the execution time limit constraints set by
the system's administrators. Wall clock time limits, regardless of the number of processors
used, are set to 8 hours. We chose not to use restart �les for these cases.

In Figure 5(b), it can be seen that SGI performance remained good up to 64 processors,
and IBM performance remained good up to 128 processors. At this point, the performance
curves start to bend upwards, indicating a switchover from being computation bound to
communication bound. This was not unexpected since we were well aware of the demanding
nature of communications required in the solver. Still, a 1-processor run for this case, which
would require over two weeks to complete, can be completed on 64 processors in slightly over
3.5 hours.

The performance of the T3E system provided interesting commentary. In all cases, this
platform required nearly double the number of CPUs as the SGI or IBM to achieve the same
execution times. Only at large numbers of CPUs did the T3E outperform the others. This
may also provide some insightful cost versus performance metrics for architectures required
to perform many unstructured grid computations. Furthermore, the computational curve
never bends, so this code never became communication bound on the Cray. This is probably
the result of combining a highly tuned communication system and poor CPU performance
for unstructured codes. The overly small cache in this system no doubt accounts for the
latter.

This behavior is also seen in the NAS parallel benchmarks. Table 2 lists the processor
MFLOP performance of the block tridiagonal (BT) solver and conjugate gradient (CG)
benchmarks. This data is gathered from several sources [11{13]. BT represents a structured
grid problem, while CG represents a kernel that is typical of unstructured grid computations
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Clock MFLOPS Ratio
System (MHz) BT CG bt

cg

SGI Origin 2000 195 55 28 1.96
IBM Power3 High 222 116 47 2.47
Cray T3E-1200 600 164 26 6.30

Table 2: Relative performance of structured versus unstructured codes.

with irregular data access patterns. Notice that the T3E has a much higher BT to CG ratio
of MFLOP performance. This illustrates that unstructured grid computations are not nearly
as e�cient on that machine as they are on the IBM and SGI systems.

6 Concluding Remarks

This paper presented performance results from an application that has bene�ted signi�cantly
from parallel computing. Computing times requiring weeks can be shortened to hours, thus
enabling comprehensive and timely modeling and simulation results. Both HPF and MPI
represent viable options in unstructured grid computations. Both approaches have shown
reduced wall clock times as more processors are added to the problem. HPF lags behind MPI
in performance for this unstructured code, and with the large attention to detail required
to get this performance, does not really provide any easier formulation than the low-level
message passing approach. However, the features being added to the HPF language, and
the maturity of the compilers, shows continued improvement.

The in-processor cache demands and repeated global reductions in this code provide a
good mixture to test the computational and communication capabilities of various systems.
Good performance requires the best of all worlds{e�cient compilers, fast processor intercon-
nection, large caches, clock speeds, etc. Currently, for this unstructured grid computation we
see the SMP-based IBM and SGI architectures outperforming the distributed memory Cray
T3E at all but the largest CPU-set levels. Undoubtedly, this is mostly due to the tradeo�s
made by the computer engineers in providing fast interconnections with small caches.

We have shown how careful attention to detail, pro�ling, and performance analysis can
help generate good e�ciency. The code itself highlights the importance and need for good
solution approaches such as in-node reductions prior to global reductions to reduce com-
munication requirements. This application should serve as a good test case for the next
generation of computers with enhanced cache and interconnection networks.
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